A mechanism to signal receptor-substrate interactions with luminescent quantum dots.

نویسندگان

  • Ibrahim Yildiz
  • Massimiliano Tomasulo
  • Françisco M Raymo
چکیده

Semiconductor quantum dots are becoming valuable analytical tools for biomedical applications. Indeed, their unique photophysical properties offer the opportunity to design luminescent probes for imaging and sensing with unprecedented performance. In this context, we have identified operating principles to transduce the supramolecular association of complementary receptor-substrate pairs into an enhancement in the luminescence of sensitive quantum dots. Our mechanism is based on the electrostatic adsorption of cationic quenchers on the surface of anionic quantum dots. The adsorbed quenchers suppress efficiently the emission character of the associated nanoparticles on the basis of photoinduced electron transfer. In the presence of target receptors able to bind the quenchers and prevent electron transfer, however, the luminescence of the quantum dots is restored. Thus, complementary receptor-substrate pairs can be identified with luminescence measurements relying on our design logic. In fact, we have demonstrated with a representative example that our protocol can be adapted to signal protein-ligand interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

Faceting instability in the presence of wetting interactions: A mechanism for the formation of quantum dots

A mechanism for the formation of quantum dots on the surface of thin solid films is proposed, not associated with the Asaro-Tiller-Grinfeld instability caused by epitaxial stresses. This mechanism, free of stress, involves instability of the film surface due to strong anisotropy of the surface energy of the film, coupled to wetting interactions between the film and the substrate. According to t...

متن کامل

Tuning the Luminescence of CdS Quantum Dots by a Simple Method

In this report, we present a facile approach for the synthesis of luminescent CdS and CdS:Mn+2 nanocrystals by reaction of CdSO4 and Na2S2O3 in the presence of thioglycerol (C3H8O2S) as capping agent. The influence of various experimental variables including, pH values and percentage of dopant, on the growth...

متن کامل

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 31  شماره 

صفحات  -

تاریخ انتشار 2006